Nonequilibrium Model for Semiconductor Laser Modulation Response
نویسندگان
چکیده
This paper presents a laser model for describing the effects of nonequilibrium carrier distributions. The approach is based on the coupled Maxwell-semiconductor-Bloch equations, with carrier–carrier and carrier–phonon collisions treated in the relaxation rate approximation. Using examples involving relaxation oscillation, current modulation, and optical injection, we demonstrate how the model can be used to study the influences of spectral hole burning, dynamic carrier population bottleneck, and plasma heating on semiconductor laser modulation response.
منابع مشابه
Power Supply and Current Modulation Circuits for Semiconductor Lasers
Design and construction of a stable current supply with protection circuits are described. The reported circuit provides a high-stable and high-level current variable from 0.5-1.2 A with the protect ion circuits to prevent over load current, voltage and off-range temperature operation. A detailed analysis of the circuit parameters is given and the time behaviors of the load voltage/current and ...
متن کاملModulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کاملTheoretical comparison analysis of long and short external cavity semiconductor laser
In this paper, considering optical feedback as an optical injection, and taking in to account round-trip time role in the external cavity, a standard small signal analysis is applied on laser rate equations. By considering the relaxation oscillation (f2) and external cavity frequencies (f) ratio for semiconductor laser, field amplitude response gain, optical phase and carrier number for long ex...
متن کاملPrecise Measurement of Semiconductor Laser Chirp Using Effect of Propagation in Dispersive Fiber and Application to Simulation of Transmission Through Fiber Gratings
Measurements of small-signal intensity modulation from direct-modulated distributed feedback (DFB) semiconductor lasers after propagation in dispersive fiber have previously been used to extract intrinsic laser chirp parameters such as linewidth enhancement factor and crossover frequency. Here, we demonstrate that the simple rate equations do not satisfactorily account for the frequency respons...
متن کاملEnhanced Modulation and Noise Characteristics in 1.55 µm QD Lasers using Additional Optical Pumping
The modulation response, relative intensity noise (RIN) and frequency noise (FN) characteristics of quantum dot (QD) lasers are investigated theoretically in the presence of an external optical beam. Using small signal analysis of the rate equations for carriers and photons, it is demonstrated that by injecting excess carriers into the QDs excited state through optical pumping, the modulation r...
متن کامل